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ABSTRACT 

The use of variational wave functions which are products of overlapping 

locally correlated functions for studying the ground state of lattice spin theories is 

described. It is found that very accurate results can be obtained for very simple 

trial functions. The method is superior for determining the energy, to methods 

based on blocks. 
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I. INTRODUCTION 

The Raleigh-Ritz variational method works well for problems with a small 

number of degrees of freedom (d.o.f.), but if the number of d.o.f. is large one must 

make some further approximation. A simple one is to choose as a trial wave 

function a product of functions each of which depends on a single or a distinct set 

or block of d.o.f. This is the Hartree or mean field approximation. Systematic 

improvements can be obtained by doing perturbation theory on the mean field 

ground state, or including a larger number of d.o.f. within each block. The first is 

sometimes inappropriate because the perturbation theory is poorly behaved while 

the latter may converge slowly as the size of the blocks increases. The block 

method may be further improved by using iterative renormalization group-like 

methods,’ but still remains sensitive to finite size effects. An alternative to 

considering blocks of disjoint sets of d.o.f. is to allow the blocks to overlap. This 

approximation IS used for quantum gasses under the name Jastrow wave 

functions.2’3 

In this paper we wish to study the application of Jastrow type functions to 

quantum spin systems and by means of several simple examples bring out the 

advantages of this method. All of these examples will involve collections of Pauli 

spins at the vertices of a regular lattice. We will consider the class of wave 

functions which may be written in the form 

J, = 2-K: (1 +wCSc)s 

where the product extends over all spin clusters C. S c. IS given by 

(1.1) 

SC = II si 
ifI C 

(1.2) 
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andS’= ?I. WC is a number less than one in magnitude. The normalization factor 

z = 1 II (I+wcSC) (1.3) 
(Sk +L c 

is the partition function for a generalized king model. This is the central 

observation of this paper for it allows us to relate a quantum mechanical system to 

an equivalent statistical mechanical problem. The couplings (or temperature) of 

the statistical mechanical system will be variational parameters. 

For the ground state if the Hamiltonian of the system is homogeneous it is 

clear that wc = wc, if C and C’ are related to each other by a rotation or 

translation. The Si are the eigenvalues of ozi but we are free to choose any 

direction we wish for this Z axis, and we will use this direction as a variational 

parameter in one example. Matrix elements of the Pauli spins can be computed in 

terms of thermodynamic averages in the Ising model (1.3) from the action of the 

spins on JI 

uxi$ = II 
I-wcsc K [ 1 Q 

CCi ,+ 
WCS 

C 

0. yi$ = iSioxi$ 

<J,IO(u)Ilp = c:O(S)> Ising (1.4) 

If we restrict all the wc to zero except for a restricted class then these may 

be used as variational parameters. If we include only those C’s which correspond to 
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single spins or pairs of spins then an approximation in terms of the usual Ising 

model results. If only single spin dusters remain then we have mean field theory. 

When this is a reasonable starting point the method of high temperature series may 

be effectively used to treat the dependence on the other wc 

II. EXAMPLE I-ONE DIMENSIONAL PLANAR MODEL 

As a first example we consider the planar model 

H = -K 1 
i ( 

uxiaxi+l + go zi uzi+l 
1 

(2.1) 

This system has an energy density per spin 

E = -(I + g$ E(4g/(l + g)‘) (2.2) 

in the ground state, where E is the complete elliptic integral. For small g E has the 

expansion 

d(g) = -4 -; T (2k - 3)!!/(2k)!! 2g2k 
k=l 

1&$225g8 
= -?- 8 - 128 - 512 - 32708 - ‘-’ (2.3) 

For 1 g 1 < 1 the best single site mean field estimate is obtained by polarizing the 

spins along x which gives EL -y2 while the best mean field estimate formed from 

adjacent blocks of L spins gives for small g 

. (2.4) 

- 
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Now consider a trial wave function of the form (1.1) with only the w for 

nearest neighbors nonzero. Then the corresponding Ising model is the usual one. 

The necessary matrix elements are 

<$Iu;uzi+q$> = ,sisi+l, =w 

~$lox’~x i+’ (9 = <( ;-yJJ$$y(: $+.+J” > 

= (1 -w 2) 

So we obtain 

c(g) < -;(1-w2)- 7 5 -; A+ . 

(2.5) 

(2.6) 

The largest error occurs for g q 1 (for g > I we would interchange the z and x 

directions) where the exact answer, 2/n, is given to within 1.83%. The comparable 

Block mean field result--in the complexity of the correlations treated by J, and the 

difficulty of the calculation--is for L = 2 which gives an error of 11.64% when 

g = 1. To achieve a comparable accuracy would require L > 16. 

If we want to improve the estimate (2.6) more of the W’S must be allowed to 

vary. The next term in I& to make an important contribution for small g is the four 

spin term (I + w4S’S’ i ‘+lSi+2Si+3). Rather than attempt the difficult approach of 

solving an Ising model with a four spin operator we resort to the method of high 

temperature series. The series for the two point function <SiSj> is standard while 

the series for <J, Iox’o xll $o is most easily computed by noting that 
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2)K<II (1 +wcSCb/<II(I +wcs% (2.7) 
c2 C 

where C 1 consists of clusters which contain i or j but not both, and C2 all others. 

The ratio of expectation values is given by the sum of volume independent 

coefficients of free energy graphs which do not contain any of the Cf interactions. 

Specifically we obtain 

<J,Iuziuzi+ll$> = w +04(2(111-w2)) +w42(2w(l -w2)U-3w2)) 

+ w43(aJl(1 -w2)(1 - . ..I) + . . . 

.$Iuxiuxi+l I$> = (1 -w2)(1 -w4 2) [I -w 4(3w2) (2.8) 

-w ,2(4 w2 - 1ow4) - w43(5w2 - . ..)I 

With g2z w2z w4 the expansions in (2.8) will be valid through g8 so for small g 

with w and w4 nonzero we obtain 

with 

w = g/2 - g3/16 + 0 g5 - g7/512 + . . . 

w 4 = g2/8 + g4/32 + 3g6/512 + . . . 

(2.9) 

(2.10) 
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for general values of g the energy obtained from (2.8) does not represent an upper 

bound since we do not know the sign of the remainder of the series, but since the 

expansion in ‘ti4 certainly converges it represents a useful approximation to the true 

energy. In this case it agrees to within .62% of the exact answer in the range 

I g I 5 1 while the error in truncating the series in (2.8) causes an error which is of 

the order of .05%. 

We do not emphasize the power series expansion (2.9) because this is a good 

method for computing the coefficients (perturbation theory is more direct), but 

because it holds out the hope that for fixed g successive approximations may 

converge very rapidly compared to the I/L behavior of mean field theory on blocks. 

The requirement for this to happen is that only a finite number of new operators 

need be added to agree with each order in perturbation theory. Naively there are 

many operators which could have contributed at order g4--namely the next nearest 
. 

neighbor two spin interaction and all four spin operators of the form S’S’+‘SjSj+‘-- 

but all except the one kept vanish. We do not know if this persists in general. 

Consider the two dimensional version (2.1) on a square lattice, and specialize 

to g= 1. This problem is not exactly solvable but by various methods the ground 

state energy is known to be approximately E q -1.099+.004.4 Keeping only the 

nearest neighbor interaction as in (2.6) we obtain an approximation in terms of the 

standard 2D Ising model with 

<u iu J> z w+2w3+405+12w7+42~y+164w +... 11 
z z n.n. 

<&Jxj>n.n. = (1 _ w2)3(1 - 6w4 - 17~~ - 4Ow8 - . ..) (2.11) 

and 
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E c min - <oio j> <u 1, J > 
w z 2 n.n. - x x n.n. 

< 0 - 1.092685 + 1o (2.12) 

at 

w= .I958 (2.13) 

Thus the simplest possible bound of this type gives (to 5 figures) E 5 -1.0927 which 

compares very favorably with the best available bound4 for this quantity 

E 2 -1.0944. Inclusion of the diagonal nearest neighbor term gives 

E’ -1.0936 2 .OOOl. 

EXAMPLE 2: ID ISING MODEL IN A TRANSVERSE FIELD 

Consider 

+ JO i 
x (3.1) 

This system exhibits a ground state phase transition at J = I from a degenerate 

state with Sz = <oz > k 0 to a nondegenerate state with S, = 0 for .I 2 1. We will 

study (3.1) with the trial function 

. 
i 

(3.2) 

so 
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z = (i) ” (1 + GiSi+,)(l + VSi) 

which is the partition function for a ID king model with a field. The operators 
i9 o 

e Y . If implemented on $ would produce a very complicated wave function, but 

acting on H only rotate the Pauli spin matrices in the x-z plane. The necessary 

matrix elements are 

sz = <uz> = ( at-82v(a2+822) 

Sx = 2(1 -w2X1 - w2)’ (1 + vS, + 2aB(l - w2P/(a2 +8 2))/X2 

DZ q <uzou & = ((1 +w)(l +V Sz) - 2~x8 (1 -” 2)“(1 - w)/(cL’ + ,!3’))/X 

Dx = 2(1 -v 2)” S,JX 

D xz = 2(1 - u2)(1 -” 2P(” + Sz)/h2 (3.4) 

where the components of the eigenvector and eignevalue of the transfer matrix are 

a = (1 -w)(l -V2)K 

6 = A -(I +w)(l +w) 

x = (I +w) + (h)2 + 4”Z)” 

The energy density is bounded by 

(3.5) 

(3.3) 
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EL - 2 (l-l-c)~~+u~~ x- 2p(l- p2)BDxz 

+ J(pSx + (I-~2Psz) 1 
p q cos 0 (3.6) 

The results of varying over W,V , and p give remarkable agreement with the exact 

result for the energy density 

E = f(1 +J)E((~ IJJj2) . (3.7) 

(Note this is just twice the energy (2.2).) For J ( 1 this bound is significantly 

better than any bound based on disjoint blocks of spins, even when improved using 

renormalization group methods.’ For example, when J is small one has the 

expansions 

E = -1 - J2/4 - J4/64 - J6/256 - . . . (exact) 

E q -1 - J2/4 - J4/64 - J6/256 - . . . (this bound) 

E = -1 - J2/4 - Jr+/128 + . . . (2 spin manifold) 

E = -1 - J2/4 - J4/96 + . . . (variational R-G 
on 2 spin block) 

(3.8) 

For J large this bound gives the result 
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E = -J(l + 1/4J2) (this bound) 

E = -J(l + 1/4J2 + 1/64J4 + . ..) (exact) (3.9) 

This calculation gives a transition at J = 1.206 with mean field indices. The 

transition point is improved over the mean field point, J = 2. In order to improve 

the exponents one would need to apply RG methods but we do not know how to do 

this. 

IV. CONCLUSIONS 

By means of simple one and two dimensional examples with known solutions I 

have demonstrated the simplicity and efficacy of a variational scheme based on a 

correlated product wave function. The potential range of applications to lattice 

Hamiltonian systems is large. Because of its ability to fit the first few terms of 

the weak coupling limit of a theory this method provides a natural continuation in 

coupling which preserves a bound. The method can be generalized to nonclassical 

statistical mechanics systems via the generalization of the Raleigh-Ritz bound 

E 5 tr(Ot HO)/tr(O+O) . (4.1) 

Other areas where improvements may be possible are, to apply this method to 

lattice field theories, and to study the connection of real space RG transformations 

on $ to RG transformations of H. 
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